HF R P LK ECEY)

The Chinese University of Hong Kong, Shenzhen

Introduction to Computer Science:
Programming Methodology

Lecture 5 List

Guiliang Liu
School of Data Science

List

List is kind of a collection

* A collection allows us to put

_ , MANY VALUES IN ONE!
many values in a single CONVENIENT PACKAGE!
“variable” |

Messy!
O

* A collection is nice because & /) I
we can carry all many o

—
G \v myect.ion
variables around in one = O B
convenient package ®

ﬂ

What is not a collection

* Most of our variables have only one value in them — when we put a
new value in the variable, the old value will be over-written

Far w=H

e ow=d

»»>» print (x)
4

List constants

* List constants are surrounded
by square brackets and the
elements in the list are
separated by commas

* A list element can be any
Python object — even another
list

* A list can be empty

»r» print ([1, 24, T6])

[1, 24, 78]

22 print ([red’, vellow , blue’ 1)
U red, " wellow , " hlue’]

»r» print ([0 red’, 24, 98. 6])

[*red’, 24, 98.6]

»»» print (1, [5, 6], 7)

1[5, 6] T

?ﬁ} print ([]]

List and definite loop - best pal

friends = [Tom ,” Jerry , Bat’] Happvy new vear Tom

fr}en%JH friends: C eriend) Happvy new vear Jerry
print \ Happy new year ,irlen Happy new wear Bat

print { Done’) Done

Looking inside lists

* Just like strings, we can access any single element in a list
using an index specified in square bracket

»»» friends = [Joseph', " Glenn , " Sally]
»»» print (friends[1])

xlenn

Looking inside lists

PYTHON LIST INDEXING

>> friends = [’ Joseph', 'Glenn’, 'Sally’]

> print(friends[1]) “9 ‘Glenh -;‘Glenn f‘SaHy

Glenn

Lists are mutable

. “: ” »»» fruit = " Banana’
e Strings are “immutable” — 235 fruit[%] o |
Traceback (most recent call last):
we cannot Chang_e the File “<pyshell#3>", line 1, in <module>
contents of a string unless fruit[0] = 'b’
we make 2 new String TypeFrror: " str’ ohject deoes not support item assignment
E

»rr» x=fruit. lower ()
>»» print (=)
hanana

. “ 1)) e
* Lists are “mutable” — we >»> lotte = [2, 14, 26, 41, 63]

can change an element of > print(lotto)
[2, 14, 2B, 41, B3]

a list using index operator >>> lottol[2]1=28
»>»» print (lotto)
[2, 14, 28, 41, B3]

How long is a list?

* The len() function takes a
list as input and returns
the number of elements in
that list

e Actually len() tells us the
number of elements in any
sequence (e.g. strings)

27 greet = "Hello Bob’
»»» print (lenigreet))
e

2y ox=[1,2," joe’, 99]
27 print (len(x))

q

Range() fu nCtion »»» m=range (4]

FErom;
range (0, 4)

»>» w[0]
0
* The range() function returns a list >»> x[1]
of numbers Ly [7]
2
»»> x[3]
. 3
* We can construct an index loop
»»¥ m=ranse (2, 10, 2]

using for and an integer iterator >>> x[0]
E
ey ow[3]
3
2oy m[4]
Traceback (most recent call last):
FiI? ;{pyshell#ﬁlﬁﬂ, line 1, in <module>
w4

IndexBrror: range object index out of range

A table of two loops

Example
friends = [Tem' , Jerrv , Bat’]

friend friends:
print O Happy new vear, , friend)

1 range | len (friends)) :
friend = friends[i]
print { Happvy new wvear, , friend)

Output

Happy
Happyv
Happy
Happyv

Happw
Happ

L

IEw
TIEWw
IEw
TIEWw
IEw
TIEWw

vear,
vEAar,
vear,
vEAar,
vear,
vEAar,

Tom
Jerry
Bat
Tom

Jerrv
Bat

Concatenating lists using +

e Similar to strings, we ;i Ef% % g
can add two existing 55 azath
lists together to create ?El“'l“' print (E] :
. 1_.. E_q 3_1 a 5.1 E'
a new list >>> print (a)

[1, 2, 3]

Lists can be sliced using :

e Remember: similar & FELS]&L 12,3, 74, 15]
to strings, the 41, 12]
second number is o ;;1-:4]12 -
“up to but no >>> t[3:]
. oy '3, 74, 15]
including SSE
9, 41, 12, 3, 74, 15]

List methods

»rr ox=list ()
»»> type(x)
{olass " list’ >

e dir (x)
A a A a A » A a a a » a a » a
[add ', ° elass ', 7 econtains ', 7 _delattr ', °_ delitem_~, ~__dir__
a a a a a a a a a n a a " a
, _doe ", " _eq ~, __format ~, " __ge ", 7 _getattribute ~, = _getitem
a a a a a " a a " a a " " a a " a a a
, _ =zt ", _hash ~, " __iadd ", ° __1muml °, °__init_ ", = __iter_ ~, ~ __le_ _
L] L] L] a L] a a L] a L] L] L] a
, _len ~, "~ 1t ", " _mml ~, " _ne ~, __new , _ _reduce_, _ _reduce_e
L] a L] L] a a L] a a L] " L] L]
= , __repr ~, _ reversed ~, _ rmual ~, _ setattr =, _ setitem ~, = =
» a A L] a A a A A a A a a A a
izeof ~, ° __str__, = _ _subelasshock ~, " append , " eclear , " copvy , count , ~ex

a 3 L] 3 . L] L] a L] a a L] a L]
tend , index , insert , pop , Temove , TEVEISe , sort’]

https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

List methods

(Optional) Naming convention:

>rr x=list ()
>¥> type(x)
{class " list’ >

»ry odir (=)

a a a a a] a a a a 0 a a 0 a

° add °, ' elass *, ' contains ', 7 delattr ', 7 delitem ', ' dir
a L a a L a a a a . L a - L
_doe__, _eq__, __format__, " __=ze__ ", __getattribute_ ", __getitem__
a a a a a] a a] a a]] a a . a a a
_ =zt °, " __hash ~, " __iadd__ ", " __imul_ ", ° __init_ ", ~ __iter__ ", T __le__
a a a a a a a a a a a a a
_len__~, " __ 1t _°, " __mul_ ", " __ ne_~, __new__, _ _reduce__ , _ _reduce_e
a a a a a a a a a 0 a a

X, __Tepr__ __reversed_ ", __rmul =, ~ __setattr__ ', ~__setitem__ ., ~__=

- a L a L L a a L a L a L a L

izeof__~, " __str__, " __subelassheck_ ~, " append, " elear’, ~copy , " ecount , " ex

a A . a L a a a a a a a a a
tend’, "index’, ’insert’, 'peop’, ‘remove', ‘reverse’, "sort’]

Regular Methods like append(), extend(), pop(), and copy() on lists are
designed for straightforward, everyday operations that programmers need to
perform on these data structures.

Special (Dunder) Methods are usually associated with enabling objects to implement
and interact with Python’s built-in functions and syntactic features

They are not usually called directly by the user, but are invoked internally by the
interpreter to implement various language features. For example, when you use the
len() function on a list, Python internally calls the list’'s __len__ () method.

Building a list from scratch

* We can create an empty list ;i stuff = list E] .
using list(), and then add $44 EEE :EE:ES [ggﬁﬂk
elements using append|() >»> print (stuff)
method [hook’, 99]

»rr gtuff. append C cockie’)
»»» print (stuff)

* The list stays in order, and ["book’, 99, " coockie]
new elements are added at
the end of the list

Is something in a list

Python provides two 53> geme = [1,9, 21, 10, 16]

operators to check whether 33 g = ome
anitemisin a list True
srr 15 S CIE
False
* These are logical operators 22 20 el

that return True or False True

* They do not modify the list

A list is an ordered sequence

* A list can hold many items >2> friend = [Ton',” Jerry', Bat’]
and keeps them in the order »2> friends. sort ()

: - »»» print (friends)
until we do something to CBat’ . Jerry . Tom]

Change the order »»7 print ifriends[1])
Jerry
_ , >
* A list can be sorted (i.e. 53> numbers = [1, 2,5, 100, 32, 7, 97, 1001]
change the order) »»» numbers. sort ()

»»7 print (numbers)
(1, 2, &, 7, 32, 97, 100, 1001]
* The sort() method means o
“sort yourself”

Built-in functions and lists

* There are a number of
functions built into Python
that take lists as inputs

e Remember the loops we
built? These are much
simpler

27 numbers = [3, 41, 12,9, 74, 15]
»27 print (len (numbers))

£

»»7 print (maz (numbers))

74

»2» print (min (numbers))

&

27 print (sum{numbers))

154

»2» print (sum(numbers) /len (numbers))

20, bobbbbbbhEbEEnES

Averaging with a list

total = 0O
count = 0
inp = input? Enter a number:’)
inp == " done’ :
value = float (inp)
total = total + value
count = count t 1
averagze = total/count

print{ The averasze is: , awverage)

Practice

* Write a program to instruct the user to input several
numbers and calculate their average using list methods

Best friends: strings and lists

* Use the split() method to
break up a string into a
list of strings

 We think of these as
words

* We can access a particular
word or loop through all
the words

222 myStr
222 words
2 print (words)

A A A L] L L] A
[" Catch™, "me’, "if, "wvou,

"Catch me if vou can

mvStr. split ()

L

2y print (len(words))

4

»»> print (words[0])

Catch
e

Catch
me

if
7oLl
Ccan

1A

words: print Gw)

“can’]

° When you do not Specify 3 #»» line = A lot of SIZIELEES:I

. : »>»> ete = line.split ()
delimiter, multiple spaces 555 print (ete)

are treated like “one” P&, *lot’, “of, 'spaces’]
delimiter 22
»»7» line = " first second: third
»»% thing = line.split ()

.) »»» print (thing)
You can specify what [first;second; third’]

delimiter character to use in >3 len(thing)

splittin 1

P 5 -
»»» thing = line.split(;")
»r»» print (thing)
[" first’, " second, ~third]
»>»» print (len{thing))
3

a

Practice

* The header of an email takes the following format:
From professor.xman@uct.edu Sat Jan 5 09:14:16 2008

For a given email header, write a program to find out the domain of
email address, and the month in which this email was sent

The double split pattern

* Sometimes we split a line one way, and then grab one piece of the
line and split it again

From professor.xman@uct.edu Sat Jan 5 09:14:16 2008

words = header. split ()
address = words[1]. split O @)

Dictionary

A story of two collections

e List: a linear collection of values that stay in order

* Dictionary: a “bag” of values, each with its own label

Dictionary

LIST: Ordered Sequence

0 1 2

Apple Book Dog

Access by Index: 5

my-list[1] > ‘Book’

Linear Collection of Values

(by order)

DICTIONARY: Labeled Bag

emjoji:

animal

animal

Access by Key:
my-dict[object] > ‘Book’

Bag of Values (by label/key)

Dictionary

* Dictionaries are Python’s most powerful data collection

* Dictionaries allow us to do fast database-like operations in
Python

* Dictionaries have different names in different languages
* Associative arrays — Perl/PHP

* Properties or Map or HashMap — Java

* Property Bag — C#/.Net

Dictionary

e Lists index their entries based 777 purse = di’:t,'::'
»»>» pursel money]

on the position in the list 55> purse[’ cands’] =

27 pursel tissues’]
»»» print (purse)

» Dictionaries are like bags —no [meney @ 12, “tissues : 75, "candy @ 3

27 print (pursel’ candy” 1)
order 3

L

7o

»»» pursel’ candy J=pursel’ candy]+2
. 27 print (purse)
e We index the elements we put Umonev @ 12, “tissues’ : 75, " ecandy @ 5]

in the dictionary with a >>» pursel[3] = 77

”lookup tag” > IZII':.I.H;IZ |:1:|L1I'S_‘E:I , , , ,
13: 77, "meonevy @ 12, Ttissues’ : 7H5, Cecandy ;5]

Dictionary

»»r purse = dict ()
2> pursel monev’] =
»27 pursel candy] =
2> pursel tissues’]
27 print (purse)

U meney @ 12, "tissues @ 74, T ecandy @ 3)
»»» print (pursel’ candy 1)

3

#»» pursel candy J=pursel candy]+2
»»» print (purse)
U monev : 12, " tissues : ThH, " candy : §J

[

o

List v.s. dictionary

* Dictionaries are similar to lists, except that they use keys instead of
numbers to look up values

2> lst = list() >»x ddd = diect ()

>>» lst. append (21) >rr ddd[” aze’ 1=21

xrx 1st. append[l%ﬁ] e II]_II].II].[-II COUrse]:182

>»» print (1st) >>» print (ddd)

[21, 183] Uage’ 1 21, " ecourse @ 182]
»xr 1st[0] = 23 22 oddd” age” 1=23

> print (1st) »»» print (ddd)

[23, 185] Uage’ 1 23, " course @ 182]

»xr» 111 = 1list ()
#¥» 111. append (21)
2> 111. append (183)
»>»>» print (111)

[21, 185]

»»» 111[0] = 23

2> print (111)

[23, 185]

»»r ddd = diet ()
>rroddd[aze 1=21

#rr oddd course’ 1=182

»»> print (ddd)

Vage’ 1 21, " course : 182}
sy oddd[age 1=23

»»» print (ddd)

Tage’ 1 23, Tcourse : 182

List

[1] /183

Dictionary

] 183
[age] |21

ddd

Dictionary literals (constants)

* Dictionary literals use curly braces and have list of key:value pairs
* You can make an empty dictionary using empty curly braces

#rro3iy = U chuclk 11,7 fred :42, 7 jan :100]
>»» print (333)

U fred’ 42, 7 chuck’ 1, T jan’ @ 100]

»27 ooo=1]

?ﬁ? print (ooo)

Most common terms?

marquard cwen
zhen zhen ~hen csev
csev .
marquar
marquard 9 csey cwen
zhen zhen

Counting with a dictionary

A common use of dictionary is counting how often we “see”
something

»r coe=dict ()
ey coel csev]
ey oecoel cwen]
27 print lece)
Vesev @+ 1, Towen 1]

#rr cocl cwen J=ceoel’ cwen’]+1

>2r print (coel” cwen’])
2

1
1

Dictionary tracebacks

* It is an error to reference a key which is not in the dictionary
* We can use the in operator to see if a key is in the dictionary

»rr ocoe=dict ()

»rr print lecel’ csev’ 1)

Traceback (most recent call last):

File “<pvshell#4f>”, line 1, in <module>

print (cccl’ csev’])

EevBrror: ~ csev

»rr osev coo

False

Practice

* Write a program to instruct the user to continuously input
some words, and use dictionary to count how many times a
word has been inputted before.

The get() method

* This pattern of checking if a key is already in a dictionary, and
assuming a default value if the key is not there is so common, that
there is a method called get() that does this for us

»»» counts = " aaa :1, bbb 12, cec’ 1G]
2y print leounts. get O eee’, 0))
[

Practice

* Write a program to instruct the user to input a line of texts, and use
dictionary to count how many times a word has been seen in this line.
You should use the get() method in this program.

Definite loops and dictionaries

* Even though dictionaries are not stored in order, we can write a for
loop that goes through all elements in a dictionary — actually it goes
through all the keys in that dictionary and looks up the values

counts = 1 chuck :1,” fred :42,7 jan :100;]

ey counts:
print (kev, counts[kev])

Jan 100
fred 42
chucls 1

Retrieving lists of keys and values

* You can get a list of i; jij =[{’_chLEL?1-_:’_H, “fred 42,7 jan :100]
keys, values or items 7 printllistiijl ,
(b th)f [" jan’, " fred’, ° chuck’]
0 rom a

dictionary »rr print (1ist (333, keys O))
[" jan’, °~ fred', * chuck]

»2r print(list(jijij. values ()))

(100, 42, 1]

#rr print (list (335, items()))

[jan’, 1000, O fred', 423, O chuck , 1J]

Bonus: two iteration variables

\kNe Ioc?p thro.ug.h the counts = U chuck’ =1, fred :42,7 jan :100;
.ey'.va ue pal.rs In a kevw, value counts. items ()
dictionary using two print (key, value)

iteration variables

chucle 1
fred 42

e Each iteration, the first jan 100
variable is the key, and
the second variable is
the corresponding
value for the key

Tuple

Tuples

* Tuples are another type of sequence that function more like a list —
they have elements which are indexed starting from O

»»> x=(C Glenn’, 2allvy’,’ Joseph' J D 1 7
2> print (x) print (i
(" Glenn , " Sally , ~ Joseph J
prroy=01,9,2)

2y print (v)

(1, 9, 2J

»»> print (maxz(y))

9

-2 i —

11°

But, tuples are “immutable”

* Unlike a list, once you create a tuple, you cannot change its contents
— similar to a string

53> ¢=[9, 8, 7] > ¥= abe’ >>> z=(8, 4, 3)

ey ow[2]=6 ey oyl2]=" g g}} z[2]

Ny prijrt{K] Tracehack (most recent call last) 5> 2[2]=0

[9; z, 6] ' File “<pyshell#23>”, line 1, in Traceback (most recent call last)
£ > : . P .
mdu%gjzs s File “<pyshell#28>”, line 1, in

¥y 1 1 . {II.'LCZ'Ij.Ll].E-}

TypeBrror: " str’ object does not 2 [2]=0

Support 1tem assignment TypeBError: " tuple’ cohject does no

t support item assiznment

Some things that you cannot do
with tuples

»rr ox=(1,2,3)
22y om.sorth)
Traceback (most recent call last):
File “<pwvshell#32>%, line 1, in “module>
%, sort ()
AttributeBrror: “tuple’ chiject has no attribute " sort’
»»¥ % append (5)
Traceback f(most recent call last):
File “<pvshell#33>%, line 1, in “module>
%. append (5]
AttributeBrror: " tuple’ object has no attribute " append’
»»¥ % reverse)
Traceback (most recent call last):
File “<pwshell#34>”, line 1, in <module>
%. reverse)
AttributeBrror: " tuple’ ohject has no attribute "reverse’

A tale of two sequences

22 1 = 1ist O

> dir (1)
a L] L] L] L] " L] L] L] L] " L] L] " L] L]
[add ', ' eclass ', 7 econtains ', 7 delattr ', 7 delitem_ ', 7 dir 7,
a a a a a a a a " a a " a a
doe ", " _egq_, __format ~, " __ge ", __getattribute =, 7 _getitem =, &=
a a a a n a a " a a " " a a " a a a a
t ", " __hash °, ° __i1add__", " __1muml °, °__init_ ., ° __iter_ ~, " __1le ", 7 __len_
a a a a a a a a a a a a a
o, 1+ 7, mul C, " _ne 7, " _new ~, _reduce_~, 7 __reduce ex_ ~, ~ __Tep
A L] A A A A A A M A A n L] A
r ~, _ _reversed_ , __rmal ~, °_ _setattr_ ~, ~ __setitem ~, = _sizecof =, =t
A L] A M

A A a a A A A A a L] A 3 . a
", __subeclasshocl 7, "append , " elear’, " copy , " count , " exztend , " i1ndex , 1
L] A A A A a a a A
nsert’ , pop , remove , reverse , sort]
»rr ot = tuple)

> dir(t)

A A A A A n A A A L] n A L] L] A

[’ add ', ' class_ ', 7 _contains ', 7 _delattr 7, 7 _dir_ ', 7 dec_ ', 7 _Eeqg
Ll a a L L a n L L M L L L Ll

T, r_f;::-rmat__ . _rge__ . r_gFtattrlhu}E_r . __get}tem;_ . _rgetnew?rg?__ .

=zt °, ° _ _hash °, " 1init_ ~, °~__iter ~, ~ _le ~, _len ~, " __ 1t , 7 _ mul

a L L a L Ll Ll a L a L L a L

o, _ne_ , __new ., _reduce ~, _ reduce ex ~, __rEepr , ~ __rmal ~,

a L] . L] L] L] L] L] L] a 3 . L]
setattr__ ", ~__sizeof__~, " __str__, __subheclasshook _, " count , index’]

Tuples are more efficient

* Since Python does not have to build tuple structures to be
modifiable, they are simpler and more efficient in terms of
memory use and performance than lists

* In our program when we are making “temporary variables”
we prefer tuples over lists

Tuples and dictionaries

. : 53> d=di
. The.ltemg) method in 35S ar éi?]:z
dictionaries returns a :;i [’ cuﬁrin’%:{—l L .
list of (key, value) rint (e v) rtems b
tuples
CSEV 2
cwen 4

»27 tups = d. items ()

»»» print (tups)

dict items ([czev , 2), (" cwen’, 4)]1]
»¥» printilist (tups))

[esev, 2), Cowen’, 4)]

»2» tups = list (tups)
»»r tups[1]
7 owen’ , 4]

Tuples are comparable

* The comparison operators work with tuples and other sequences if
the first item is equal. Python goes on to the next element, until it
finds the elements which are different

»rro(0,1,2)4(58,1, 2)

True

o0, 1, 2000000 <0, 3, 4)

True

»2r 0 Jones™, Sally)<(Jones , Fred)
False

>»» U Jones , 2ally)»(Adams™, Sam)

True

Sorting lists of tuples

* We can take advantage of the ability to sort a list of tuples to get a
sorted version of a dictionary

* First we sort the dictionary by the key using the items() method

srrod=1"a" 10,7k 11, & 122}

#»r t=d. items ()

ey t=1ist (t)

Fxr ot

[, 22y, Cbv', 1), &, 10)]
#¥r t.sort ()

Fxr ot

[Ca", 100, Cw', 1), &, 22)]

Using sorted()

srrod={a :10,°k" 11, 2" 122}

* We can do this even >>> d. items ()

more efficiently using a dict_items([C o', 22), Cb', 1), Ca, 1001
T - »»» t=sorted(list (d. items (J))
built-in fungtlon 335y
sorted() which takes a [a", 100, Cbv', 1), <o, 22)]
sequence as a
parameter and returns 5y k, v t:
a sorted sequence print (k, v)
a 10

Practice

* Write a program, which sorts the elements of a
dictionary by the value of each element

Sort by values instead of key

* If we could construct a >o> d={a 110, b 11,7 ¢ :22}
list of tuples of the form 222 tmp = list ()

PP ke, v d. items () :
(key, value) we could sort tmp. append { (v, k))
by value

»r»» print (tmp)
« We do this with a for [(22, "), (1, "b’), (10, "a")]

: 27 tmp. sort lreverse=)
loop that creates a list of 55> print (tmp)

tuples (22, "7, (10, "a), (1, b)]

Example: Finding the 10 most common words
in a file

fhand = open{ mvhost. tzt™, =)
counts = diet ()
for line 1n fhand:

words = line.split ()

for word 1n words:

counts [word] = counts. get (word, 0) +1

lst = list ()
for kew, val in counts. items () :
l=t. appendl (val, kev))

lst. sort (reverse = True)

for wal, kev in 1st[:10]:
print (kev, val)

	幻灯片 1: Introduction to Computer Science: Programming Methodology
	幻灯片 2
	幻灯片 3: List is kind of a collection
	幻灯片 4: What is not a collection
	幻灯片 5: List constants
	幻灯片 6: List and definite loop - best pal
	幻灯片 7: Looking inside lists
	幻灯片 8: Looking inside lists
	幻灯片 9: Lists are mutable
	幻灯片 10: How long is a list?
	幻灯片 11: Range() function
	幻灯片 12: A table of two loops
	幻灯片 13: Concatenating lists using +
	幻灯片 14: Lists can be sliced using :
	幻灯片 15: List methods
	幻灯片 16: List methods
	幻灯片 17: Building a list from scratch
	幻灯片 18: Is something in a list
	幻灯片 19: A list is an ordered sequence
	幻灯片 20: Built-in functions and lists
	幻灯片 21: Averaging with a list
	幻灯片 22: Practice
	幻灯片 23: Best friends: strings and lists
	幻灯片 24
	幻灯片 25: Practice
	幻灯片 26: The double split pattern
	幻灯片 27
	幻灯片 28: A story of two collections
	幻灯片 29: Dictionary
	幻灯片 30: Dictionary
	幻灯片 31: Dictionary
	幻灯片 32: Dictionary
	幻灯片 33: List v.s. dictionary
	幻灯片 34
	幻灯片 35: Dictionary literals (constants)
	幻灯片 36: Most common terms?
	幻灯片 37: Counting with a dictionary
	幻灯片 38: Dictionary tracebacks
	幻灯片 39: Practice
	幻灯片 40: The get() method
	幻灯片 41: Practice
	幻灯片 42: Definite loops and dictionaries
	幻灯片 43: Retrieving lists of keys and values
	幻灯片 44: Bonus: two iteration variables
	幻灯片 45
	幻灯片 46: Tuples
	幻灯片 47: But, tuples are “immutable”
	幻灯片 48: Some things that you cannot do with tuples
	幻灯片 49: A tale of two sequences
	幻灯片 50: Tuples are more efficient
	幻灯片 51: Tuples and dictionaries
	幻灯片 52: Tuples are comparable
	幻灯片 53: Sorting lists of tuples
	幻灯片 54: Using sorted()
	幻灯片 55: Practice
	幻灯片 56: Sort by values instead of key
	幻灯片 57: Example: Finding the 10 most common words in a file

